Meaningful Models: Utilizing Conceptual Structure to Improve Machine Learning Interpretability
نویسنده
چکیده
The last decade has seen huge progress in the development of advanced machine learning models; however, those models are powerless unless human users can interpret them. Here we show how the mind‘s construction of concepts and meaning can be used to create more interpretable machine learning models. By proposing a novel method of classifying concepts, in terms of ‘form’ and ‘function’, we elucidate the nature of meaning and offer proposals to improve model understandability. As machine learning begins to permeate daily life, interpretable models may serve as a bridge between domain-expert authors and non-expert users.
منابع مشابه
Interpretability of Machine Learning Models and Representations: an Introduction
Interpretability is often a major concern in machine learning. Although many authors agree with this statement, interpretability is often tackled with intuitive arguments, distinct (yet related) terms and heuristic quantifications. This short survey aims to clarify the concepts related to interpretability and emphasises the distinction between interpreting models and representations, as well as...
متن کاملSimulation of Scour Pattern Around Cross-Vane Structures Using Outlier Robust Extreme Learning Machine
In this research, the scour hole depth at the downstream of cross-vane structures with different shapes (i.e., J, I, U, and W) was simulated utilizing a modern artificial intelligence method entitled "Outlier Robust Extreme Learning Machine (ORELM)". The observational data were divided into two groups: training (70%) and test (30%). Then, using the input parameters including the ratio of the st...
متن کاملTheory of Fuzzy Information Granulation: Contributions to Interpretability Issues
Granular Computing is an emerging conceptual and computational paradigm for information processing, which concerns representation and processing of complex information entities called “information granules” arising from processes of data abstraction and knowledge derivation. Within Granular Computing, a prominent position is assumed by the “Theory of Fuzzy Information Granulation” (TFIG) whose ...
متن کاملProtein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملManipulating and Measuring Model Interpretability
Despite a growing body of research focused on creating interpretable machine learning methods, there have been few empirical studies verifying whether interpretable methods achieve their intended effects on end users. We present a framework for assessing the effects of model interpretability on users via pre-registered experiments in which participants are shown functionally identical models th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1607.00279 شماره
صفحات -
تاریخ انتشار 2016